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Abstract

The Val-d’Or vein field (VVF), located in the southern Abitibi subprovince (Québec, Canada), is host to ~47 Moz gold and
is therefore an example of a greenstone-hosted orogenic gold district. Gold is contained in quartz-tourmaline-carbonate
veins that cut As-poor intermediate to mafic volcanic and intrusive rocks, including dioritic, granodioritic and gabbroic sills,
dikes, stocks, and plutons. Five investigated orebodies (Goldex, Triangle, Plug #4, Pascalis Gold Trend, Beaufor) host gold
in vein- and wallrock-hosted pyrite-rich sulfide aggregates (> 95 vol%) that show a porous core domain (Py1), with abundant
inclusions of carbonate, silicate, and Fe-oxides up to several tens of pm in size. A homogeneous pyrite rim domain (Py2)
surrounds Pyl and contains most of the gold as native gold and polymetallic (Au-Ag-Te-Bi) inclusions, primarily calaverite
and petzite. The two pyrites show different Au and As contents (Pyl = Au<30 ppm; As <67 ppm; Py2=Au <1250 ppm;
As <550 ppm). Pyrite shows a ubiquitous shift in 8°*S values of up to+3.0%o from Py1 (§**S = —0.4%0 to 5.8%0, n=32)
to Py2 (8**S =0.0%o to 6.3%0, n="59) and records a small, slightly negative A*S signature between — 0.20%o and 0.01%o.
The &**S shift suggests that removal of reduced sulfur species from auriferous hydrothermal fluids causes the formation of
inclusion-hosted gold in Py2 by a decrease in the fluid sulfur fugacity (fS,) through wallrock sulfidation of Fe-oxides. The
shift also correlates with locally enriched Co and Ni concentrations in Pyl (<1 wt%), compared to lower, oscillatory zoned
concentrations (< 0.1 wt%) in Py2, respectively, indicating an overall decrease in fluid oxygen fugacity (fO,). Contempora-
neously, a decrease in fluid tellurium fugacity (fTe,) drives polymetallic inclusion-hosted gold formation in Py2, initially as
calaverite followed by increasingly Ag-bearing petzite and hessite. The multiple sulfur isotopes and trace element composi-
tions recorded in pyrite in the VVF indicate that a homogeneous fluid reservoir introduced gold-sulfide complexes. Even if
considered a localized process at the ore-shoot scale, fluid-wallrock sulfidation reactions can lead to a coupled decrease in
1S5, fO,, and fTe, of auriferous hydrothermal fluids in a greenstone-hosted As-poor gold district.
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Introduction

Orogenic gold mineralization accounts for more than 6573
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et al. 2006; Groves and Santosh 2016; Herzog et al. 2023).
Hydrothermal events associated with an orogenic cycle
have the potential to release metamorphic and/or magmatic
fluids that accumulate at < 10 km depth, below the brittle-
ductile transition. At the gold precipitation site, key fluid
mechanisms such as pressure variations, fluid mixing, or
fluid-wallrock reactions have been considered main drivers
to cause orogenic gold formation (Phillips 1986; Colvine
1989; Hodgson and Hamilton 1989; Hodgson 1993; Robert
1997; Robert et al. 2005; Ward et al. 2017; Sugiono et al.
2022). Many orogenic gold deposits are hosted in meta-sed-
imentary rocks. In such cases, gold is commonly hosted by
As-rich pyrite (>> 1 wt%) and/or arsenopyrite. An increase
in As leads to efficient lattice-bound gold deposition in As-
rich pyrite through coupled Au-As redox reactions (Reich
et al. 2005; Pitcairn et al. 2006; Pokrovski et al. 2019, 2021;
McDivitt et al. 2022; Sugiono et al. 2022). In contrast,
many greenstone gold districts are dominated by As-poor
mafic volcanic rocks, such as in the Xiaoqinling district
(North China Craton), Mt Pleasant district (Yilgarn Cra-
ton), Timmins-Porcupine (Superior Craton), or Hope Bay
belt (Slave Craton), indicating that As is not a requirement
for orogenic gold formation (Bi et al. 2011; Sherlock et al.
2012; LaFlamme et al. 2018b; Dubé and Mercier-Langevin
2020; Dubé et al. 2020). This implies that physico-chemical
processes, which occur during crustal fluid advection in As-
poor mafic volcanic and sedimentary rocks and that lead
to highly localized sulfide and gold precipitation in veins,
remain to be fully understood at the sulfide grain scale.

Based on a detailed paragenetic sequence, in situ micro-
analytical techniques have the potential to elucidate physico-
chemical processes that result in the precipitation of gold and
gold-bearing sulfides. Changes in fluid chemistry leading
to gold precipitation may be constrained based on textural
observations in combination with high-resolution multiple
S isotope and trace element composition of gold-hosting
sulfides (e.g., LaFlamme et al. 2018c; Sugiono et al. 2022).
Two physico-chemical parameters have a strong effect on Au
solubility: the fluid sulfur (fS,) and oxygen (fO,) fugacities.
Changes in fS, and fO, of a hydrothermal fluid influence
the 84S signature, the minor and trace element composi-
tion, including gold-bisulfide complex solubility (Pokrovski
et al. 2014, 2015, 2022), precipitated sulfides and associated
phases (e.g., Sugiono et al. 2022). Other important param-
eters to monitor local physico-chemical processes include
variations of Co and Ni concentrations, which show both an
increased solubility at higher fO, conditions and can pro-
vide additional information on fO, fluctuations at the time of
sulfide deposition (Peterson and Mavrogenes 2014; Fouger-
ouse et al. 2016; Ward et al. 2017; Daver et al. 2020; Jansson
and Liu 2020; Sugiono et al. 2022).

In this study, we present textural evidence, multiple sul-
fur isotopes, and trace element compositions of Au-bearing
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sulfides from five orebodies (Goldex, Triangle, Plug #4, Pas-
calis Gold Trend and Beaufor) to understand which common
physico-chemical fluid processes at the mineral grain scale
can control gold precipitation throughout the world-class
Val-d’Or vein field (VVF) in the southern Abitibi subprov-
ince, Québec, Canada.

Regional geological setting

The southeastern margin of the Superior Craton (Fig. 1a)
comprises two subprovinces, the Abitibi and the Pontiac,
that are structurally juxtaposed along the Larder Lake-Cadil-
lac fault zone (LLCfz; Fig. 1b). The Abitibi subprovince
comprises greenstone belts consisting of volcano-sedimen-
tary rocks intruded by granitic plutons and, in general, meta-
morphosed to the sub-greenschist and locally up to amphi-
bolite facies. The ultramafic, mafic, and felsic submarine
volcanic sequences were deposited between ca. 2795 and
2695 Ma, and the volcanic successions were intruded by
plutons of tonalitic, granodioritic, dioritic, and monzonitic
compositions between ca. 2750 and 2630 Ma (Latulippe
1966; Pyke et al. 1973; Dimroth et al. 1978, 1983; Hyde
1980; Scott et al. 2002; Ross et al. 2011a, b; Dubé and Mer-
cier-Langevin 2020). The Pontiac subprovince structurally
underlies the Abitibi subprovince to the north (Fig. 1b) and
consists of sedimentary rocks of the Pontiac Group meta-
morphosed from upper greenschist to amphibolite facies.
The Pontiac Group is composed of turbiditic graywacke
and mudstones with lesser ultramafic—mafic volcanic and
compositionally varied intrusive rocks (Camiré et al. 1993;
Thurston et al. 2008; Piette-Lauziere et al. 2019; Rehm et al.
2021). The Abitibi-Wawa Orogeny affected the two subprov-
inces throughout a prolonged period of ~ 120 million years
from ca. 2700 Ma to 2580 Ma and caused thick-skinned
and thin-skinned tectonics with several compressive peri-
ods between <2685 and >2640 Ma (Moser 1994; Mercier-
Langevin et al. 2007; Thurston et al. 2008; Dubé and Mer-
cier-Langevin 2020). Both subprovinces were affected by
contemporaneous low- to medium-grade regional metamor-
phism between ca. <2669 and >2643 Ma and <2665 and
2645 Ma (Machado et al. 1991; Davis et al. 1994; Powell
et al. 1995; Piette-Lauziere et al. 2019).

Geological setting of the Val-d’Or vein field

The stratigraphic sequence that hosts the VVF (Fig. 1b)
comprises the Malartic and Louvicourt groups (Fig. 2). The
oldest unit of the Malartic Group is the La Motte-Vassan
Formation (2714 +2 Ma), which comprises effusive ultra-
mafic, komatiitic rocks. The overlying Dubuisson Forma-
tion (2708 +2 Ma) is characterized by ultramafic—mafic
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Fig.1 a Map outlining the extent of the Superior Craton and loca- fault. 1=Canadian Malartic, 2=Camflo, 3=Norlartic, 4=Wes-

tion of the Abitibi and Pontiac subprovinces. b Geological map of
the area between Malartic and Val-d’Or showing the outline of the
Val-d’Or vein field, as well as the studied and other gold depos-
its (after Wong et al. 1991; Morasse et al. 1995; Pilote et al. 2000;
Bedeaux et al. 2017; Montsion et al. 2018; SIGEOM 2020). Bf =Bar-
nat fault, IGf=Island Garden fault, MF =Marbenite fault, Nf=Nor-
benite  fault, QTC=quartz-tourmaline-carbonate, = Sf=Sladen

dome, 5=Shawkey, 6=Siscoe, 7=Siscoe Extension, 8=Sullivan,
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Fig.2 Simplified timeline reflecting the temporal and structural
framework of the Malartic-Val-d’Or district, highlighting the major
period of orogenic gold mineralization commonly inferred based on
cross-cutting relationships of dikes with faults, shears, fabrics, and
structural data in the VVF (c.f. Ayer et al. 2005; Dubé and Gosselin
2007; Bedeaux et al. 2017). In situ analyses of QTC veins (Herzog
et al. 2023) define one period of gold deposition and a later period
of hydrothermal fluid flow that remobilized gold. A =amphibolite

facies metamorphism, BB =Bourlamaque batholith, GR=granu-
lite facies metamorphism, GS=greenschist facies metamorphism,
I-GMD =I-type granodiorite-monzonite-diorite, KSZ=Kapuskas-
ing Structural Zone, LG=Louvicourt Group, MG=Malartic
Group, PG=Pontiac Group, PLC=Preissac-LaCorne Plutonic
Suite, QTC =quartz-tourmaline-carbonate, S-G=S-type granite,
TTG = tonalite-trondhjemite-granodiorite
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rocks with local felsic rocks (Pilote et al. 2000, 2015). The
youngest unit of the Malartic Group, the Jacola Formation
(2706 2 Ma), contains mafic volcanic rocks, such as pillow
basalts (Machado and Gariépy 1994). The oldest unit of the
Louvicourt Group is the Val-d’Or Formation (2704 + 1 Ma),
composed of basaltic pillow lavas and pyroclastic andesitic
rocks. The youngest rocks of the Louvicourt Group are the
volcaniclastic mafic to felsic rocks of the Héva Formation
(2702 +2 Ma; Machado and Gariépy 1994; Pilote et al.
2000, 2015).

Tectono-magmatic history of the Val-d’Or vein field

The VVF (Fig. 2) is the result of two major magmatic,
two compressive and one transpressive periods during the
Abitibi-Wawa Orogeny, which caused regional large-scale
folds and fabrics observed (Moser 1994).

A first period of I-type plutonism (Fig. 2) included the
2699.8 + 1.0 Ma syn-volcanic Bourlamaque batholith, a
quartz-granodiorite-diorite (Wong et al. 1991). Near con-
temporaneous small-scale intrusions include the gabbroic
2693.2+4.7 Ma Plug #4 (Dubé 2018), the 2687+ 1.2 Ma
sill-like Goldex quartz-diorite to granodiorite (David 2019;
Munger 2019), the 2685 +0.9 Ma Triangle diorite (Dubé
2018), and the 2684 + 1 Ma East Sullivan monzonite stock
(Pilote et al. 1999). Between 2645 and 2613 Ma, a second
S-type intrusive period generated the Preissac-LaCorne plu-
tonic suite, located northeast of Val-d’Or (Feng et al. 1992;
Kerrich and King 1993; Chown et al. 2002; Davis 2021).

The earliest compressive period D1 (ca. 2685-2669 Ma)
is inferred in the Malartic-Val’d-Or district by large-scale
folding (F1) and formed structural corridors that are sub-
parallel to the LLCfz (Imreh 1984; Corfu 1993; Morasse
et al. 1995; Morasse 1998; Dubé and Mercier-Langevin
2020). These F1 folds are only locally observed further in
the west in the areas of Rouyn-Noranda (Poulsen 2017)
and Timmins (Ferguson et al. 1968; Bleeker 2015), lack
axial planar foliation, and are truncated by the Timiskam-
ing unconformity. The second compressive period D2 is
the result of N-S shortening that superimposed the regional
penetrative foliation (S2) on volcanic bedding (Robert 1989,
1990; Corfu et al. 1991; Bedeaux et al. 2017; De Souza
et al. 2017; Dubé and Mercier-Langevin 2020). East trend-
ing sub-vertical and steeply N-dipping F2 folds and S2 axial
planar foliation (Fig. 1b) strongly affect the Timiskaming
Group, constraining the maximum age for D2 at <2669 Ma
(Dimroth et al. 1983; Daigneault et al. 2002; Robert et al.
2005; Bleeker 2015). Pegmatitic dikes associated with the
Preissac-LaCorne plutonic suite at ca. 2647 Ma (Feng and
Kerrich 1991), ca. 2639 Ma (Ducharme et al. 1997), and ca.
2628 Ma (Davis 2021) cross-cut S2 and provide the mini-
mum age constraint for D2 in the southern Abitibi and the
Val-d’Or area. The final deformation period is characterized
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by a dextral, NE-trending transpressive strike-slip D3, rec-
ognized in mineral stretching lineation along mineralized
brittle-ductile reverse shear zones (<2643 Ma; Robert 1989,
1990, 1994; Wilkinson et al. 1999; Bedeaux et al. 2017;
Herzog et al. 2023).

Orogenic gold mineralization in the Val-d’Or vein
field

The intermediate to mafic-felsic volcanic and intrusive rocks
of the VVF (Figs. 1b and 2) host~46.8 Moz (1460 t) of
gold in second to third order reverse shear zones associ-
ated with the LLCfz, which contain brittle-ductile, fault-fill
shear, and associated extensional quartz-tourmaline-carbon-
ate (QTC) veins (Robert 1989, 1990, 1994; Gosselin and
Dubé 2005; Dubé et al. 2007; Monecke et al. 2017; Dubé
and Mercier-Langevin 2020). Wallrocks commonly display
igneous assemblages composed of varying proportions of
plagioclase-quartz-alkalifeldspar-biotite-hornblende-ilmen-
ite-titanomagnetite-magnetite that underwent greenschist-
facies metamorphism (Robert 1983; Robert and Brown
1984, 19864a, b; Dubé 2018). These fault-fill, brittle-ductile
shear veins dip to the south, strike E-W, and are sub-parallel
to oblique to the penetrative S2 foliation that formed towards
the peak of the N-S shortening event, syn- to late-D2, at
2643 +3 Ma based on compiled xenotime dates (Fig. 2; Her-
zog et al. 2023). The veins display m-wide, strongly chlo-
ritized to quartz-tourmaline-albite-muscovite-pyrite altera-
tion halos. Sulfide mineral assemblages commonly consist
of pyrite + pyrrhotite & chalcopyrite-sphalerite + galena and
minor late-stage chalcopyrite-sphalerite + galena. Gold is
hosted dominantly as native Au+ Ag or Au-Te inclusions
in pyrite and as native gold in quartz or tourmaline (Fig. 3,
4, 5; Robert 1983; Robert and Brown 1984, 1986a, b; Rob-
ert et al. 2005; Rezeau et al. 2017; Dubé 2018; Daver et al.
2020). A texturally late polymetallic gold-chalcopyrite-
carbonate + sphalerite + galena assemblage is commonly
developed in sulfide fractures, which formed at 2607 +5 Ma
and post-dates the major syn- to late-D2 hydrothermal gold
mineralization period (Herzog et al. 2023).

Sampling and analytical techniques
Mine sites, field samples, and petrography

For this study, representative sulfide mineral assemblages
from the orogenic gold ores were examined for their rela-
tionships with gold-hosting veins and the vein-hosting struc-
tural fabric. Five orebodies hosting QTC veins (Goldex, Tri-
angle, Plug #4, Beaufor, Pascalis Gold Trend) were sampled
from drill cores. The vein sets, summarized in Table 1, are
described in more detail in Herzog et al. (2023). Further
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Fig. 3 Field, core, and sample photographs showing key relationships
between host rocks and hydrothermal quartz-tourmaline-carbonate
veins at a Goldex, b Triangle, ¢ Plug #4, and d Beaufor. Cb=car-
bonate, ccp=chalcopyrite, chl=chlorite, fuc=Cr-bearing phyllo-

material is presented in Electronic Supplementary Materi-
als 1 and 2 (ESM1, Fig. 1; ESM2, Tables 1 and 2). Major
sulfide parageneses were established. Detailed characteri-
zation of 26 samples by reflected light using a Zeiss Axio
Imager M2 was completed to determine the sulfide min-
eralogy, texture, and paragenesis. Five epoxy mounts were
prepared that contained 26 cylindrical rock cores, 6 mm in
diameter, which were extracted from characterized samples.
The five epoxy mounts were characterized for their major
element composition, internal heterogeneity, texture and
zonation using energy-dispersive-spectroscopy (EDS), and
backscattered electron imaging (BSE) under analytical con-
ditions of 20 kV and 175.9 pA in a FEI F50 scanning elec-
tron microscopy (SEM) at the Laboratoire de Microanalyse
(Université Laval).

Sulfide mineral chemistry

The sulfide samples were analyzed at Laboratoire de Micro-
analyse, for their major and minor element compositions
using a CAMECA SX-100 electron probe micro-analyser
(EPMA) that is equipped with five wavelength-disper-
sive spectrometers. The beam size was 10 um and beam

qz-tur-cb-py

-tur-cb-py-ccp-sp-A
reverse shear N C D e

reverse shear

contact
QTC/Bourlamaque diorite

silicate, gn=galena, Kfs=K-feldspar, plag=plagioclase, py =pyrite,
qz=quartz, sp=sphalerite, tur=tourmaline. QTC =quartz-tourma-
line-carbonate vein

conditions at 15 kV and 20 nA. Elements of interest for
spot analyses included S, Mn, Fe, Co, Ni, Cu, Zn, Pb, As,
and Sb (ESM2, Table 6). A total of 64 spot and line analy-
ses of uncoated sulfide minerals followed using a RESOlu-
tion 193 nm ArF Excimer laser system (Applied Spectra)
equipped with a S-155 large volume ablation cell (Laurin
Technic), and coupled to an Agilent 7900 ICPMS, at the
LabMaTer (Université du Québec a Chicoutimi). Thirty-four
analytes were collected at beam sizes varying between 19
and 55 pm with a pulse rate of 15 Hz, a scan speed of 10
to 15 um/s and a fluence of 3 J/cm?. To calculate quantita-
tive sulfide trace element concentrations for line and spot
analyses, three reference materials were used as calibrants:
Laflamme PO-727 (a synthetic sulfide doped with ~40 pg/g
PGESs, Memorial University), MASS1 (Wilson et al. 2002),
and the USGS basaltic glass GSE-1 g (Guillong et al. 2005)
using preferred values from the GEOREM database (Jochum
et al. 2005) and Fe was used as internal standard based on
EPMA analyses. LA-Q-ICPMS data was reduced through
Iolite v4 and averaged values (ppm) for each sulfide domain
are reported (Table 2; ESM2, Table 3; Woodhead et al. 2007,
Paton et al. 2011). Three synthetic sulfides, UQAC-FeS1,
UQAC-FeS5 (Savard et al. 2018), and MSS5 (Mungall
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Fig.4 Common paragenesis of quartz-tourmaline-carbonate veins
at the Goldex, Triangle, Plug #4, Pascalis Gold Trend, and Beaufor
orebodies, particularly well developed in intrusive host rocks. a Early,
highly deformed quartz-carbonate veins are commonly cross-cut by
a set of deformed, unmineralized quartz-tourmaline-carbonate veins
(Triangle). b Major gold mineralization hosted in strongly altered
wallrock, consisting of primarily carbonate and white mica that host
pyrite with a barren, porous Pyl core and Au-bearing, homogeneous
Py2 rim (Triangle). ¢ Bulk of the gold within brittle-ductile, lami-
nated shear veins is commonly associated with the tourmaline- and

@ Springer

quartz-rich parts of the veins, hosting sulfide aggregates of several
cm to dm, primarily composed of pyrite-rich assemblages (Trian-
gle). d Porous Pyl core in pyrite, hosting quartz-tourmaline-carbon-
ate as well as sulfide and Fe-oxide inclusions, with a homogeneous
Py2 rim overgrowth that contains bulk of the native Au and polym-
etallic inclusions (Triangle). e Native Au associated with ilmenite
in quartz-tourmaline-carbonate vein (Plug #4). f Homogeneous Py2
rim overgrowth of magnetite (Plug #4). Au=gold, cb=carbon-
ate, ilm=ilmenite, mag=magnetite, qz=quartz, ser=white mica,
tur =tourmaline
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Fig.5 Polymetallic inclusions (Au-Ag-Te-Bi) with gold in homoge-
neous Py2 rims, contain calaverite, minor petztite, and various BiTe
polytypes with minor base metal sulfides such as chalcopyrite. a
Reflected light photomicrograph of a typical calaverite-Au+ Ag+Bi

and Brenan 2014), along with GSE-1 g, were also used to
assess quality control of the individual laser sessions and
are compiled in ESM1, Figs. 6 and 7. In addition to the line
and spots, analysis high-resolution quantitative maps of five
samples were conducted on selected sulfides grains (ESM1,
Figs. 2, 3, 4, and 5). The newly developed method (LA-FF-
ICP-TOF-MYS) is described in detail in Savard et al. (2023)
and Paul et al. (2023) and summarized in ESM1.

Multiple sulfur isotope analyses

In situ multiple sulfur isotope ratios for 91 spots in pyrite
(Table 2; ESM2, Table 3) were acquired on a CAMECA
IMS 1280 Secondary Ion Mass Spectrometer (SIMS), at the
Centre for Microscopy, Characterisation and Analysis at
the University of Western Australia. The epoxy mount was
trimmed at 1 cm and combined with a standard block containing
matrix-matched sulfide mineral reference materials including
(LaFlamme et al. 2016): Sierra pyrite (638 =1.09+0.15%0;
534S =2.17+0.28%0; 8°°S =3.96 + 0.60%0) and Nifty-b chal-
copyrite (8%*S= —1.78 +£0.21%o; 8°*S= —3.58 +0.44%0;
8%°S = —7.15+0.63%0). The mount was trimmed to a thick-
ness of 4 mm and coated with 30 nm of Au. The sample sur-
face was sputtered over a 5 X5 pum area with a 10 kV, Gaussian
Cs* beam with intensity of ~2.5 nA, and total impact energy of
20 kV. Secondary ions were admitted in the double focusing
mass spectrometer within a 75 um entrance slit and focused in
the center of a 3000 um field aperture (X 130 magnification).
Energy was filtered using a 40 eV band pass with a 5 eV gap
toward the high-energy side. All sulfur isotopes were collected
simultaneously: 28, **S, and **S in Faraday cup detectors fit-
ted with 10'° Q (L2, 3S) and 10'' Q (L1, 338, and H1, **S)
resistors, and S in an electron multiplier (H2), all operat-
ing at a mass resolution of ~2500. The **S'H and *S peaks
are not completely resolved under these conditions; thus, the
magnetic field was offset slightly to the low-mass side to avoid

Py2

calaverite
inclusion
trail £ Bi

fracture

inclusion in Py2 contained in the Plug #4 orebody. b Back-scattered
electron image of Py2 from the Goldex orebody containing a trail of
small calaverite inclusions and native gold grain

interference from *2S'H on the **S peak. The magnetic field
was regulated using NMR control. Each analysis includes a
pre-sputtering over a 10X 10 um area during 30 s, followed by
the automatic centering of the secondary ions in the field aper-
ture. Each analysis then consists of a 30 four-second cycles
acquisition. Unknown sample material measurements were
interspersed with matrix-matched reference material (Sierra
pyrite and Nifty-b chalcopyrite). The Sierra pyrite and Nifty-b
chalcopyrite were then used to monitor standard repeatability
and analytical drift and to correct for instrumental mass frac-
tionation (ESM1). Calculations for the §**S, A*S, and A*S
values are compiled in ESM2, Table 4. The average measure-
ment errors (26) of the unknowns yield uncertainties for 5°*S
(+0.30%0), A**S (+0.20%0), and A*®S (+0.41%o). The cal-
culations for the absolute, in situ, propagated errors for §>*S,
A3S, and A®S are outlined in LaFlamme et al. (2016).

High-precision bulk pyrite multiple sulfur isotope analy-
ses (328, 33,343, and 3°S; n= 10) were acquired from QTC
veins (ESM2, Table 5) described in Beaudoin and Pitre
(2005). The pyrite samples were analyzed at McGill Uni-
versity and analyses followed the multiple sulfur analytical
protocol outlined in Helt et al. (2014) and are summarized
in ESM1. The analytical uncertainty (1c) for both, 8%S and
ABS values, was + 0.02%o.

The A3®S data for in situ and bulk multiple sulfur isotope
analyses are reported in ESM2 but not further discussed due
to their large absolute errors.

Results

Sulfide paragenesis and relationships of auriferous
quartz-tourmaline-carbonate veins

A hydrothermal paragenesis of sulfide and wallrock altera-
tion assemblages was established for each orebody and is

@ Springer
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Table 1 Major sulfide mineral parageneses and associated sulfide mineral textures recorded in each orebody

Mineralization style Orebody

Relative sulfide
paragenesis

Sulfide texture

Mineral assemblage

Quartz-tourmaline-carbonate vein Goldex

Triangle

Plug #4

Pascalis Gold Trend

Beaufor

Pyla

Pylb

Py2

Pyl

Py2

Ccp3

Pyl

Py2

Ccp3

Pyl

Py2

Ccp3

Pyl

Py2

Ccp3

Anhedral, homogeneous to minor
heterogeneous zones, strongly frac-
tured, irregular rim, no inclusions

Euhedral, eroded rim, homogeneous,
porous core, and homogeneous rim,
tur-cb inclusions

Euhedral, weakly irregular rim,
weakly fractured, rt inclusions, sub-
parallel to foliation

Euhedral, homogeneous silicate inclu-
sions, weakly eroded rim, weakly
fractured, replaced by Py2 and forms
porous core

Sub-euhedral, homogeneous to minor
heterogeneous zonation, strongly
fractured, strongly eroded rim,
porous core, cb-tur inclusions

Anhedral, homogeneous, hosted in
Py1 and Py?2 fractures

Euhedral, homogeneous silicate inclu-
sions, weakly eroded rim, weakly
fractured, replaced by Py2 and forms
porous core

Sub-euhedral, homogeneous to minor
heterogeneous zonation, strongly
fractured, strongly eroded rim,
porous core, cb-tur inclusions

Anhedral, homogeneous, hosted in
Py1 and Py2 fractures

Euhedral, homogeneous, minor porous
core, weakly eroded rim, weakly
fractured, ccp inclusions, replaced
by Py2

An-sub-euhedral, homogeneous,
porous core, weakly to strongly
fractured, strongly eroded rim, cb-
tur-ccp inclusions, replaced by Ccp3

Subhedral, homogeneous, strongly
eroded rim, weakly fractured, hosted
in Pyl & Py2 fractures and rims

Anhedral, homogeneous, silicate-cb
inclusions, strongly eroded rim,
strongly fractured

An-subhedral, homogeneous to minor
heterogeneous zonation, strongly
fractured, strongly eroded rim, cb-
tur-ccp inclusions

Minor, anhedral, homogeneous, hosted
in Pyl and Py2 fractures

qz-tur-cb-py-ccp

qz-tur-cb-py-Au

qz-cb-py-rt

qz-cb-py-ccp

qz-tur-cb-py-ccp-po-sch-rt-Au

qz-cb-ccp

qz-cb-py-ccp-sch-mt-po

qz-tur-cb-py-ccp-po-sch-rt-tellurides
Au

qz-cb-ccp

qz-tur-cb-py-po-ccp-mag

qz-tur-cb-py-po-Au

cb-qz-py-ccp-rt

qz-chl-py-ccp-mol

qz-tur-cal-ank-dol-py-po-ccp-sch-Au-
tellurides

qz-cb-ccp

Ab = albite, Ag = silver, ank = ankerite, Au = gold, bt = biotite, bn = bornite, cal = calcite, cb = carbonate, ccp = chalcopyrite, chl = chlorite,
dol = dolomite, ep = epidote, gn = galena, hem = hematite, mag = magnetite, mol = molybdenite, po = pyrrhotite, py = pyrite, gz = quartz, rt

= rutile, sch = scheelite, sp = sphalerite, fur = tourmaline

summarized in Figs. 3 and 4. More detailed descriptions of
sulfide mineral textures are in Table 1 as well as in ESM2,
Tables 1 and 2.

The Goldex, Triangle, Plug #4, Pascalis Gold Trend, and
Beaufor orebodies host gold in association with QTC veins
(Fig. 4a), which contain pyrite-rich sulfide assemblages

@ Springer

(> 95 vol%) within cm- to dm-sized pyrite aggregates.
These pyrite aggregates can form within the laminated vein
or occur within altered wallrock, particularly in “seriticized”
or tourmalinized areas (Figs. 3a—d and 4b—c). Vein alteration
halo assemblages include pervasive quartz- “sericite”-albite-
chlorite-carbonate and minor Cr-bearing phyllosilicates
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(Fig. 3d). Pyrite commonly shows a porous core (Pyl)
with abundant carbonate, tourmaline and minor sulfides,
including chalcopyrite, sphalerite, galena, and pyrrhotite
as well as Fe-Ti-oxides such as ilmenite, titanomagnetite,
and magnetite (Fig. 4d-f) and a homogeneous pyrite rim
(Py2). Inclusion size and distribution of Pyl from veins
strongly contrasts with that in wallrocks. Vein-hosted pyrite
(Fig. 4d) shows erratically distributed, larger inclusion sizes
up to hundreds of pum in size, whereas wallrock-hosted pyrite
contains evenly distributed, smaller sized inclusions. The
homogeneous Py2 rim hosts native Au and polymetallic Au-
Ag-Te-Bi inclusions, primarily calaverite, which range from
nm to um in size (Fig. Sa-b). Both pyrite cores (Py1) and
rims (Py2) are cross-cut by micro-fractures, which typically
contain a chalcopyrite-carbonate-Au—Ag-Te-Bi + sphaler-
ite + galena assemblage. At Goldex, the early Pyl can be
divided into Pyla, which displays an anhedral texture and
is fractured and inclusion-free. Pylb is euhedral with an
irregular rim that commonly contains silicate, tourmaline,
and carbonate, as well as rare native gold, inclusions. Pylb
forms the porous core for Py2.

Sulfide mineral compositions

In situ elemental analyses of chalcopyrite and pyrite from
vein and alteration mineral assemblages at the Goldex, Tri-
angle, Plug #4, Pascalis Gold Trend and Beaufor orebodies
reveal that out of 34 measured analytes, only the elements
Au, Ag, Te, Bi, Co, Ni, As, Se, and Sb (Table 2; ESM2,
Table 3) occur above detection limits (< 100 ppb) as minor
(< 10,000 ppm) and trace concentrations (< 1000 ppm) in
Pyl cores and Py2 rims. Only Pylb (Au <30 ppm) and Pyl
(Au<11 ppm) cores hosted in Goldex and Plug #4, respec-
tively, contain trace concentrations of Au. In general, Py2
rims contain the bulk of the gold as native gold or polym-
etallic gold inclusions (Fig. 6), which include major calaver-
ite and minor petzite, with other Au-Ag-Bi-Te assemblages
of various compositions (Au <1250 ppm; Ag <205 ppm,;
Te <2250 ppm; Bi <3000 ppm).

Goldex pyrite yields lower concentrations of Co
(<424 ppm) and Ni (<635 ppm) in porous Pyla and Pylb
(Table 2) compared to oscillatory zoned Co, Ni, and As
in Py2 (Co <1450 ppm; Ni<1700 ppm; As <125 ppm).
Homogeneous Py?2 also contains areas of relatively high
Se and Sb (both <220 ppm) concentrations. Gold occurs at
low concentrations in Py1b (<30 ppm) and within nanom-
eter-sized polymetallic gold inclusions contained in Py2
(Fig. 5b).

Triangle pyrite displays locally distributed areas of Co
(<2000 ppm), Ni (<400 ppm), and Se (<50 ppm) in porous
Pyl (Table 2) and low concentrations of Co (<529 ppm),
as well as oscillatory zoned Ni (<300 ppm) and As
(<541 ppm) associated with homogeneous Py2. Visible

@ Springer

polymetallic inclusions and sporadic distribution of Sb
(L35 ppm) characterizes Py2.

Pyrite from Plug #4 yields primarily low concentrations
of Co (<128 ppm) and Ni (<22 ppm) in porous Pyl and
Py2 (Co<401 ppm; Ni <26 ppm), the latter of which also
shows enrichment in As (<148 ppm) and Se (<897 ppm).
Low concentrations of Au (<11 ppm), Ag (<17 ppm), Te
(<22 ppm), and Bi (<5 ppm) occur in Pyl, but no inclu-
sions were observed. Py2 contains gold in visible polymetal-
lic inclusions (Fig. 5a).

Porous Pyl from the Pascalis Gold Trend (Table 2) yields
localized areas of minor concentrations in Co (<4500 ppm)
and Ni (<550 ppm). Homogeneous Py2 shows oscilla-
tory zones in Co (<3300 ppm), Ni (<2200 ppm), and As
(<550 ppm). One analyzed Py2 rim has the highest recorded
concentration of Co (Fig. 6; Co <8000 ppm) in all orebod-
ies. Elevated concentrations of Co, Ni, and As (Fig. 6) in
oscillatory zoned Py2 appear unrelated to inclusions.

Porous Beaufor Pyl primarily contains low trace concen-
trations of Co (<389 ppm) and Ni (<493 ppm). Homogene-
ous Py2 contains low Co (<503 ppm) and Ni (<437 ppm),
but higher local concentrations of As (<199 ppm), Se
(<48 ppm), and negligible Sb.

Multiple sulfur isotope composition

In situ multiple sulfur isotopic composition of pyrite (n=91)
from QTC veins at Goldex, Triangle, Plug #4, Pascalis Gold
Trend, and Beaufor orebodies (Fig. 7a; ESM2, Table 3)
shows a moderate range in 8%s (from — 0.4%0 to 6.3%o;
Fig. 7b) and a narrow range in A**S values (from — 0.20%o
to 0.23%o; Fig. 7c). Pyrite commonly yields a shift in 8**S
values (< 3.0%o), from Py1 cores to Py2 rims (Figs. 7a and
8; Table 2). Similarly, bulk pyrite multiple sulfur isotope
analyses (Fig. 7a; Table 2) yield 8**S values from 0.6%o
to 6.0%0 and A*3S from — 0.07%o to 0%o. Both, in situ and
bulk pyrite multiple sulfur isotope data, have a similar
range in sulfur isotopic compositions, with a systematically
small, mostly negative deviation in A**S, outside the field
for mass-dependent fractionation of sulfur (MDF-S). The
analytical uncertainty (26) for negative A**S values overlaps
with the MDF-S field, such that care must be exercised in
interpretation.

Sulfur isotope analyses of pyrite (n=29) from the Goldex
orebody show the lowest 5**S values (—0.4%o to 0.5%o) that
are associated with the barren Pyla and Py1b core domains
(Fig. 8c). Higher 8°*S values (0.0%o to 2.4%o) characterize
Py2 rims (Fig. 7a; Table 2). Both pyrite domains yield a con-
sistent negative A**S range between —0.15%0 and 0.01%o.

Py1 core hosted in altered diorite wallrock of the Triangle
orebody (Fig. 8a) records a 8**S value of — 0.1%o (Fig. 7a)
and the highest A**S value (0.23%o) of all QTC orebodies
and in general range between 0.6%o and 3.5%o, with A3*S
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Fig.6 Reflected light photomicrograph, qualitative, and quantitative
LA-FF-ICP-TOF-MS maps of Pyl and Py2 from Pascalis Gold Trend
(PGT_34), showing the key minor and trace elements As, Bi, Co, Se,

values between — 0.03%0 and 0.11%0 (n=9). This single
outlier could also be explained if a Pyl inclusion was meas-
ured during in-situ sulfur isotope analysis. The Py2 rim
shows higher 8°*S values (up to 4.3%0) and negative A%S
values (>—-0.16%0). Higher 8**S and negative A*S values
commonly characterize vein-hosted Py2 (n=16; Fig. 7a;
Table 2).

Vein pyrites from Plug #4 (n=14) show lower 8>S val-
ues recorded in Py1 cores (2.2%0) compared to higher values
in Py2 rims (up to 4.6%o). Both pyrite domains display a
small negative A*’S range between — 0.20%0 and — 0.03%o
(Fig. 7a; Table 2).

Te, Ni, Ag, and Au in the quartz-tourmaline-carbonate veins. Red cir-
cles indicate areas hosting polymetallic inclusions (Au-Ag-Te-Bi)

Pyrite domains Pyl and Py2 from the Pascalis Gold
Trend orebody (n = 14) display a narrow range in 8>*S val-
ues, between 5.2%o and 3.5%o, respectively (Fig. 7b), and
A3S values range between —0.16%0 and 0.01%o (Fig. 7a;
Table 2).

Vein pyrites at Beaufor (n=9) display lower 8**S values
in Py1 core (> 5.6%0) and higher 8°*S values in the Py2 rim
(<6.3%0). Both pyrite domains show negative A**S values
(> —0.13%o; Fig. 7a; Table 2).

Bulk pyrite multiple sulfur data from vein pyrite sam-
ples (Table 2; ESM2, Table 5; n=10) described in Beau-
doin and Pitre (2005) yield a similar range in °*S values

@ Springer
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Fig.7 a A 8>S vs. A*S plot showing multiple sulfur isotope data
(pyrite) for Pyl and Py2 associated with quartz-tourmaline-carbon-
ate veins (Triangle, Plug #4, Beaufor, Goldex, Pascalis Gold Trend)
and alteration halos (Triangle) from the VVF. Outline of the mass-
dependent fractionation field for sulfur (MDF-S, LaFlamme et al.
2018b). Error bars (20) display the overall analytical uncertainties.
All individual SIMS spot and bulk pyrite analyses are in Table 2 and
ESM 2. Bulk multiple sulfur isotope data for Canadian Malartic (CM,
Helt 2012; Helt et al. 2014), volcanogenic massive sulfide depos-
its (VMS, Sharman et al. 2015) of the Abitibi subprovince, as well
as primitive magmatic sulfur with a composition of 8**S=0%o and

(between 0.2%o and 5.9%0) and a narrow range in A*S
values (between — 0.07%o and 0%o). Pyrite from Goldex,
Lucien-Béliveau (extension of the Pascalis Gold Trend),

@ Springer

A3S=0%o (Labidi et al. 2013; Fiorentini et al. 2018) and the esti-
mated range of Neoarchean seawater yielding values of 8*S> 0%
and A®S < —1.5%0 (Jamieson et al. 2013). a A **S vs. A33S plot for
both pyrite generations hosted within quartz-tourmaline-carbonate
veins. The golden arrow indicates observed sulfur isotope evolu-
tion trends from porous Pyl cores towards homogeneous Py2 rims.
ARA = Archean Reference Array of A*’S ~ 0.89*5%S (Ono et al.
2009). Bulk and in situ multiple sulfur isotope data from orogenic
gold deposits hosted in the Yilgarn Craton compiled in LaFlamme
et al. (2018c). b Frequency plot of &**S values for each orebody. ¢
Frequency plot of A33S values for each orebody

and Beaufor have bulk &**S (0.2%o, 4.2%0, and 5.0%o,
respectively) and A%S (= 0.03%o, —0.03%o, and — 0.01%o,



Mineralium Deposita (2024) 59:1039-1064

1051

2 -Triangle
E 5%S = -0:1%o

A*S = +0.23%

. +2.2%0

+2.0% +0.11%o

+0.10%o

qz-"ser” 100 ym

-0.01%o

= : 4
+0.1% !
0.03% 3 e

- . % -0.03%o
+0.7%o i s _6
-0.15%o L RS +0.2%o

- ST U ) -0.06%08
+0.3%o 4 A

Y 69
-0.2% +0.6%o

9 SRR, 0. 1%

+0.8%o 200 pm
-0.03%0" " - -1 =

Fig.8 Reflected light photomicrographs showing key sulfide mineral
assemblages and in-situ SIMS analyses. Empty symbols represent
texturally early Pyl and filled symbols texturally late Py2 associated
with native Au inclusions. a Pyrite hosted in altered quartz-sericite
alteration halo at the Triangle orebody. Early, porous Pyl core with
abundant silicate inclusions shows slightly lower 8**S and signifi-
cantly higher A**S values compared to the homogeneous Py2 rim that
hosts polymetallic inclusions (26: 84S <0.3%o and A¥S <0.10%o;
analysis number LQ_20_x). b Pyrite hosted in quartz-tourmaline-
carbonate vein at Pascalis Gold Trend, showing porous Pyl core and

respectively) values within the range recorded in Pyl and
Py2 by in situ multiple sulfur analyses (Fig. 7a—c).

Discussion

Most commonly proposed fluid mechanisms associated
with sulfide and gold precipitation in orogenic gold systems
include fluid mixing (e.g., Cameron and Hattori 1987; Beau-
doin and Pitre 2005; Neumayr et al. 2008; Beaudoin and
Chiaradia 2016), fluid boiling and immiscibility (Peterson
and Mavrogenes 2014; Sugiono et al. 2022), and fluid-rock
reactions (Phillips 1986; Ward et al. 2017). Orogenic gold
systems in meta-sedimentary rock successions commonly
incorporate Au as “invisible gold” through coupled Au-As
redox reactions into As-rich sulfides (e.g., Pokrovski et al.
2019, 2021), whereas in meta-volcanic rocks, gold fre-
quently occurs in the form of polymetallic (Au-Ag-Te-Bi)
inclusions in As-poor sulfides, suggesting different fluid
mechanisms to precipitate gold (e.g., Bi et al. 2011; Sher-
lock et al. 2012). These processes have an important bearing
on fO, and/or fS, conditions of a hydrothermal fluid and

J . 2
=~ +5.0%0
-0.04%o

A”S = -0.06%

“#AYS = -0.07%

6“8\—' +5.9%o.

-

homogeneous Py2 rim. Both domains have a narrow range in 54S
and negative A%S signature (26: 5**S <0.3%0 and A**S <0.05%0;
analysis number PGT_29_x). ¢ Early, porous pyrite core contains
large tourmaline and carbonate inclusions, shows slightly lower §**S
values compared to the rim at Goldex. Both domains yield slightly
negative A**S values (20: 8**S <0.3%0 and A¥S <0.11%o; analysis
number GX_35_x). d Homogeneous Py2 rim in a quartz-tourmaline-
carbonate vein of the Beaufor orebody, which hosts a native Au inclu-
sion and shows slightly higher 8**S and negative A%S values (2:
5%*S <0.3%0 and A.3*S <0.11%o; analysis number LB_C481_26R_x)

accordingly gold solubility that control the style of orogenic
gold deposits. Here, we examine the within-grain sulfide
multiple sulfur isotope and trace element signatures to better
understand hydrothermal fluid mechanisms that precipitate
Au-Ag-Te-Bi-bearing sulfides in orogenic gold deposits.

Gold-hosting pyrite and auriferous hydrothermal
fluid signatures

The VVF includes several QTC vein orebodies including
Goldex, Triangle, Plug #4, Pascalis Gold Trend, and Beaufor
that are hosted in meta-volcanic and intrusive rocks (Fig. 3).
These veins commonly display at least two texturally and
chemically distinct sulfide generations (Table 2): a porous
silicate, carbonate and minor sulfide, and Fe-oxide inclusion-
bearing Pyl core, which is surrounded by a homogeneous
Py2 rim (Fig. 4). The Py2 rim hosts most of the gold, either
as native or polymetallic Au-Ag-Bi-Te inclusions (Fig. 5;
e.g., Robert 1983; Robert and Brown 1984, 1986b; Rezeau
et al. 2017; Daver et al. 2020). Robert and Brown (1986b)
and Rezeau et al. (2017) recognized the precipitation of tex-
turally late pyrrhotite at Sigma and Lac Herbin (Fig. 1b)
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associated with the late stages of QTC vein formation, which
coincides with the precipitation of Py2. This association of
late homogeneous Py2 rims and pyrrhotite, and the lack of
abundant hematite or acidic alteration halos (Figs. 3 and
4), imply that the pyrite-rich assemblages formed under
reducing fluid fO, and near-neutral pH conditions, within
the pyrite stability field (Figs. 8, 9a).

The textural relationship between a porous pyrite core
(Py1) surrounded by a homogeneous pyrite rim (Py2) is
frequently documented in orogenic gold systems and inter-
preted to record coupled dissolution-reprecipitation reac-
tions in sulfide minerals (e.g., McCuaig and Kerrich 1998;
Goldfarb et al. 2001, 2005; Robert et al. 2005; Fougerouse
et al. 2016). In many cases, pyrite dissolution and remo-
bilization require interaction with a high fO, and low pH
(<5) hydrothermal fluid and an increase in fluid fS, during
the reaction, which will lead to reprecipitation of marcasite
(Fougerouse et al. 2016; Wu et al. 2019). However, marca-
site is not recorded in pyrite of the VVF. The erratically dis-
tributed, large-sized inclusions recorded in Pyl (Figs. 4d, 6
and 8b—d), the low variability in trace element compositions
(Fig. 6), and consistent A%S signatures between Pyl and
Py2 suggest that Py2, which overgrows Pyl and gangue min-
erals, was precipitated from an evolved hydrothermal fluid.

In the five investigated orebodies, Py2 hosts most of the
gold primarily in the form of polymetallic inclusions com-
posed of calaverite and native gold with minor petzite. How-
ever, polymetallic inclusions that lack major Au-bearing tel-
lurides can contain various proportions of Au (<1250 ppm),
Ag (<205 ppm), Te (<2250 ppm), and Bi (<3000 ppm).
In Goldex (Pylb) and Plug #4 (Py1), low concentrations of
lattice-bound Au could be identified (<30 ppm). Daver et al.
(2020) noted pyrite rims and cores that contain similarly
low concentrations for Ni (<4000 ppm), Co (<700 ppm),
and As (<100 ppm) in pyrite from the Lac Herbin, Goldex,
Beaufor, and Triangle orebodies (Fig. 1b). Moreover, it has
been shown that As contents higher than 1000 ppm in pyrite
facilitate the uptake of lattice-bound gold into pyrite through
Au-As coupled redox reactions (Reich et al. 2005; Pokrovski
et al. 2019, 2021; Wu et al. 2021). The low As contents
recorded in Pyl, Pylb (<67 ppm), or Py2 (<550 ppm) may,
therefore, explain the formation of gold-bearing inclusions
and nm- to um-sized polymetallic inclusion trails within
crystal lattice deficiencies developed during pyrite growth
(Figs. 5 and 10a).

Multiple sulfur isotope signature of hydrothermal fluid

The S values for Pyl cores and Py2 rims (Table 2) from
the five orebodies are as follows: Goldex = —0.4%o to 2.4%o;
Triangle =0.0%o0 to 4.3%o0; Plug #4 =2.2%0¢ to 4.6%o; Pas-
calis Gold Trend =4.9%o to 5.2%o0; and Beaufor =5.6%o
t0 6.3%0. Mean A®S values (Table 3) are —0.03 +0.17%o
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Fig.9 a A fO,-pH diagram showing characteristic fluid condi-
tions for orogenic gold mineralization. The blue arrow represents
the hydrothermal fluid paths leading to gold deposition in quartz-
tourmaline-carbonate veins of the VVF. Modified after Ohmoto
(1972) and Hodkiewicz et al. (2009). The mineral stability fields of
the Fe-O-S system and sulfur species are based on XS=0.05 mol/
kg, and solid green lines (A**S) represent contour lines of isotopic
shifts in &°*Svalues. Gold solubility contour lines (in ppm) are
taken from Shenberger and Barnes (1989). Further experimental
conditions include T=300 °C, P=1 kbar, Na* =1 m, K* =0.1 m,
Ca** =0.01 m, and 25’*S=0%c. b Activity diagram showing the
relationships between changes in 8.3*S, related to the removal of H,S
from a hydrothermal fluid, and total gold solubility (a(XAu)) and the
observed hydrothermal processes associated with gold precipitation
in the quartz-tourmaline-carbonate veins. Modified after Palin and Xu
(2000)

(2SD) for Pyl and —0.08 +0.09%¢ (2SD) for Py2. This nega-
tive A**S signature (ranging from —0.20%o to 0.01%o) in
pyrite-rich veins of the VVF (Fig. 7a—c) must be treated
with caution due to single spot uncertainties within error
of 0% and overlap with the MDF-S field (Fig. 7a). Even
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Fig. 10 a Diagram showing Au and As contents of Pyl and Py2
in log Au (mol%) vs. log As (mol%) space to determine gold solu-
bility as a function of As-contents in pyrite. Modified from Reich
et al. (2005) and Pokrovski et al. (2019). b A logfTe,-logfS, diagram
showing the formation of increasingly Ag-rich tellurides during fS,
decrease and Py2 growth, at conditions of T=300 °C, P=1 bar.
Modified from Afifi et al. (1988a). Bn=bornite; ccp=chalcopyrite;
po =pyrrhotite; py =pyrite; VVF = Val-d’Or Vein Field

if systematic, the negative A**S signature could represent
an apparent trend, which can result from SIMS drift cor-
rection, known to cause a variation of +0.1%o0 (Whitehouse
2013). Nonetheless, a similarly small and negative trend in
bulk pyrite multiple sulfur data (Fig. 7a—c; Table 2; ESM2,
Table 5) is consistent with the in-situ SIMS A*3S values in
the VVFE.

The small negative range in A**S values is in con-
trast with bulk pyrite multiple sulfur isotope data by Helt
(2012), reporting primarily positive A*S values, ranging
from —0.01%o to 0.11%o, at the Pontiac sedimentary rock-
hosted Canadian Malartic deposit (Fig. 7a). Similarly, oro-
genic gold districts in the Yilgarn Craton commonly yield

Table 3 Overview of recorded mean, in situ, multiple sulfur isotopic, and sulfide trace element compositions recorded in relative sulfide paragenesis

Ni As Se Te Bi Au Ag

Co

A3°S (%) MEAN  2SD

APS (%0) MEAN  2SD

Relative sulfide paragenesis  8°*S (%0) MEAN ~ 2SD

Sulfide

++ o+
++

0.53
0.55

—0.08
-0.17

0.17
0.09

—-0.03
-0.08

Pyl, Pyla+b (+Au) 2.1 4.2
Py2 (Au)

pyrite

++

++

3.6

33

pyrite

+ + +, major concentration (> 1 wt% or > 10,000 ppm); + +, minor (< 1 wt% or < 10,000 ppm); +, trace (< 0.1 wt% or < 1000 ppm)
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a consistent, positive A*S signature (Fig. 7), indicating a
sulfur reservoir at least partially sourced from sedimentary
rocks (Selvaraja et al. 2017; LaFlamme et al. 2018a, b; Sug-
iono et al. 2021; Caruso et al. 2022). The VVF is hosted by
volcanic and intrusive rocks in which volcanogenic hydro-
thermal processes formed VMS deposits with negative A*’S
signature (Jamieson et al. 2006; Sharman et al. 2015). The
A™S signature across the VVF indicates that the sulfur res-
ervoir was homogeneous, consistent with a low variance
source at depth (c.f., Pettke et al. 1999; Phillips and Powell
2010; Tomkins 2013; Pitcairn et al. 2015, 2021; Patten et al.
2020).

The restricted range of mean 8*S values of 2.1 +4.2%o
(2SD) and 3.3 +3.6%o (2SD) recorded in Py1 cores and Py2
rims (Table 3), respectively, in the five orebodies (Fig. 7a)
suggests the contribution of a homogeneous, reduced sulfur
source. Sulfur derived specifically from sedimentary rocks
commonly shows extremely variable 5**S signatures that
reflect strong local controls, based on variations of &3S val-
ues recorded in marine pyrite (e.g., LaFlamme et al. 2018a;
Pasquier et al. 2021). Therefore, it is unlikely that the source
of sulfur for the VVF is sourced entirely from sedimentary
rocks. Rather, a common homogeneous sulfur source is sug-
gested, which is in agreement with the small negative A**S
signature recorded in the VVF.

Fluid fO, and fS, control on gold precipitation
in greenstone belts

Hydrothermal fluids associated with orogenic gold systems
are typically reduced, lie within several magnitudes of the
fayalite-magnetite-quartz buffer (FMQ to FMQ-4), and dis-
play an excess of reduced sulfur, particularly, HS™, H,S, and
S5~ complexes, that transport gold (350 + 50 °C; Mikucki
and Ridley 1993; Loucks and Mavrogenes 1999; Williams-
Jones and Heinrich 2005; Evans et al. 2006; Pokrovski et al.
2014, 2015, 2022). A variety of physico-chemical fluid pro-
cesses may lead to gold decomplexation from reduced aurif-
erous fluids.

In the case of the VVF, there is no evidence for gold
precipitation associated with fluid cooling or major pH
fluctuations. Narrow, cm-, to m-wide QTC vein alteration
halos lack acidic alteration assemblages (Figs. 3 and 4), sug-
gesting a near-neutral pH as is common in orogenic gold
systems (Goldfarb et al. 2001, 2005; Goldfarb and Groves
2015). Instead, as reduced auriferous fluids are seismically
pumped through the crust (Sibson 1981; Sibson et al. 1988;
Sibson and Scott 1998; Cox 2016), gold solubility is driven
by either an increase in fO, or a decrease in fS,. An increase
in fO, of a hydrothermal fluid results in decomplexation of
sulfur—gold complexes inducing deposition of Au (Palin and
Xu 2000; Williams-Jones and Heinrich 2005; Sugiono et al.
2022). Similarly, a decrease in fS, through the removal of
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reduced sulfur from a hydrothermal fluid leads to a decrease
in gold-sulfide complex activity (Seward 1989; McKibben
and Eldridge 1990), which can significantly decrease gold
solubility and lead to gold precipitation. Monitoring of
changing fluid conditions using the pyrite 8**S and A3*S
values, in combination with Ni, Co, and As distributions
and contents, can provide insights into the mechanisms that
lead to gold deposition.

Fluid mixing

Studies have shown that fluid mixing between a reduced
deep-seated fluid and a more oxidized magmatic fluid, or
hypothesized meteoric fluid and seawater, can lead to desta-
bilization of dissolved gold-sulfide complexes and lead to
gold precipitation (Uemoto et al. 2002; Bateman and Hage-
mann 2004). It is possible to investigate fluid mixing using
the A**S signature, whereby several products between differ-
ent end-member sulfur reservoirs will produce variable 8**S-
A™®S signatures (Cameron and Hattori 1987; Neumayr et al.
2008; LaFlamme et al. 2018c¢), and specifically a depleted
A3S signature compared to the two end-members (Barré
et al. 2021). Sulfur reservoirs that have been invoked as end-
member sulfur sources associated with Neoarchean orogenic
gold systems include seawater sulfate (5**S between ca. 0%o
and 7%o and A33S between ca. — 1.5%o and 0%o; Jamieson
et al. 2013) trapped as pore waters in supracrustal rocks
(Sharman et al. 2015; Beaudoin and Chiaradia 2016) and
magmatic sulfur, which could be either transported in mag-
matic fluids or leached from volcanic rocks (8°*S =0%o and
A33S =0%0; Labidi et al. 2013; Fiorentini et al. 2018).

The QTC veins of the VVF display a consistent non-
zero, slightly negative A*S signature in both Pyl and
Py2 in all orebodies (A*’S = +0.03%c and =+ 0.08%o,
respectively; Table 3). Moreover, the variable in situ §°*S
(between — 0.4%o and 6.3%0) and low variance A33S data
(between — 0.20%¢ and 0.01%o; Fig. 7; Table 2) are in good
agreement with high-precision, bulk 8**S data (ranging
between 0.2%o0 and 5.9%o; Fig. 7; Table 2) and APS data
(ranging between —0.07%o0 and 0%o). However, fluid mix-
ing as gold decomplexation mechanism of seawater sulfate
trapped in crustal rocks and magmatic sulfur cannot explain
the low variance, negative A>*S signature recorded in vein-
hosted Py2 that contains gold mineralization. Fluid mix-
ing of these two sulfur reservoirs would affect A*S values
(<< —0.10%o0) and thereby change the A*S signature dur-
ing Py2 growth (Figs. 7a and 8).The uncertainty associated
with SIMS analyses are too large to be able to see if such a
change is present here. Nonetheless, variations in bulk ana-
lytical uncertainties are small enough to exclude fluid mix-
ing as a gold decomplexation mechanism. Whereas hydro-
gen and oxygen isotope compositions recorded in quartz,
tourmaline, and carbonate of the VVF indicate fluid mixing
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between a deep-seated metamorphic and upper crustal fluids
(Beaudoin and Pitre 2005; Beaudoin and Chiaradia 2016),
the relatively homogeneous 8**S-A*S signature (Fig. 7a), in
turn, could be interpreted to indicate that the S budget was
dominated by S transported by the metamorphic fluids with-
out significant input of upper crustal sulfur and that fluid
mixing was not the driver for gold decomplexation.

Fluid boiling and immiscibility

Pressure variations that cause fluid boiling and immiscibil-
ity can fractionate H, and H,S ) from a hydrothermal fluid,
thereby increasing the fluid fO, (Drummond and Ohmoto
1985; Richards and Kerrich 1993; Wilkinson and Johnston
1996; Palin and Xu 2000; Weatherley and Henley 2013;
Hutchison et al. 2020). In a hydrothermal system at 300 °C,
near-neutral pH, and S =0.05 mol/kg, this shift in fluid fO,
can result in the destabilization of Au-sulfide complexes and
can lead to a tenfold decrease in gold solubility (Roberts
1987; Seward 1989; McKibben and Eldridge 1990). As the
S0,%7/H,S ratio increases by removal of reduced H, and
H,S () 5°*S values will decrease by up to 20%0 (Ohmoto
and Rye 1979), which has been observed in several mag-
matic-hydrothermal and orogenic gold orebodies (Peterson
and Mavrogenes 2014; Hutchison et al. 2020; Sugiono et al.
2022). Moreover, a significant decrease in gold solubility
through As-controlled redox reactions, which causes gold
precipitation, can lead to a distinct depletion in §**S signa-
tures recorded between pyrite cores and rims (shift in 8°*S
up to — 15%o; e.g., Sugiono et al. 2022). Another indicator
for oxidizing conditions during gold precipitation is hematite
wallrock alteration associated with Au-hosting pyrite show-
ing a negative 84S signature, as observed in the Kalgoorlie
gold camp (Yilgarn Craton, Australia; Godefroy-Rodriguez
et al. 2020; McDivitt et al. 2022).

In contrast, in the greenstone-hosted VVF, there is no
documented evidence for hematite wallrock alteration
associated with a decrease in 8°*S values (Figs. 7a and
8). Instead, 5°*S values increase from Pyl to homogene-
ous Py2. Only the Pascalis Gold Trend pyrite records a
decrease with slightly higher 8**S values (Fig. 7a) in Pyl
cores (8°*S =5.2%¢) compared to homogeneous Py2 rims
(6**S=3.5%0). In general, 8*S values increase with increas-
ing distance from the LLCfz (Figs. 1b and 7a). However,
this range between orebodies (from — 0.4%o to 6.3%0) might
also be the result of local operating processes. For example,
orogenic gold systems are known to entrain locally derived
sulfur from meta-sedimentary rocks at the site of gold pre-
cipitation (Chang et al. 2008). By comparison, meta-vol-
canic rocks contain low sulfur concentrations (Patten et al.
2020). Nonetheless, local entrainment of pore waters trapped
in meta-volcanic rocks can have a major impact on fluid fO,,
which can lead to differing 8**S values of precipitated pyrite

and might explain the range of detected 8**S values across
VVF orebodies (Ohmoto 1972; Ohmoto and Rye 1979; Pas-
quier et al. 2021).

Pyl contains inclusions of carbonate, tourmaline, chal-
copyrite, and minor pyrrhotite in combination with elevated
Ni and Co concentrations (Tables 2 and 3). Particularly, Ni
and Co are both known to derive from increased solubilities
at higher fO, conditions (Fougerouse et al. 2016; Jansson
and Liu 2020). These inclusions in Py1 cores could imply
rapid crystallization related to phase separation (Roman
et al. 2019). However, in the case of phase separation,
smaller nm- to um-sized, inclusions together with low Ni
and Co concentrations (Roman et al. 2019) are expected as
opposed to several tens of um-large inclusions as well as
elevated Ni and Co concentrations recorded in Pyl. More-
over, gold inclusions are contained in homogeneous Py2,
which lacks textural evidence for phase separation. In the
VVF, positive 84S values are in contrast to sanukitoids and
intrusion-related gold deposits in the Abitibi subprovince
that commonly record a low 8**S signature between —25%o
and — 5%o, indicating either a temperature dependent frac-
tionation or high fluid fO, conditions associated with gold
mineralization (Hastie et al. 2023). Therefore, fluid boiling
and immiscibility leading to an increase in fluid fO, are not
responsible for gold precipitation in the VVF.

Fluid-rock reactions

The Fe-oxide inclusions in Pyl and homogeneous texture
in Py2, combined with the increase in 8**S values of up
to+ 3.0%o from early Py1 to Py2 (Figs. 4, 6 and 7), suggest
that the removal of reduced, light sulfur, with low 8%S, from
a hydrothermal fluid (i.e., fluid desulfidation; Fig. 9a-b) in
a reducing environment led to destabilization of Au-sulfide
complexes (Seward 1989; McKibben and Eldridge 1990).
Fluid desulfidation-wallrock sulfidation has been proposed
to remove sulfur from a hydrothermal fluid that ascends
through volcanic rocks (e.g., Goldfarb et al. 2005; Robert
et al. 2005; Biet al. 2011; Ward et al. 2017; Jian et al. 2021;
Petrella et al. 2021). The reduced sulfur reacts with Fe-bear-
ing minerals common in greenstone rocks (Phillips 1986;
Groves et al. 1998, 2000; Goldfarb et al. 2005; Ward et al.
2017). Such minerals that contain reduced iron (e.g., Fe-
rich oxides, carbonates, silicates) either are hosted in igne-
ous wallrock assemblages or occur as a product of wallrock
alteration in orogenic gold vein alteration halos. Therefore,
Fe-bearing host rock mineral assemblages can significantly
enhance fluid desulfidation (i.e., removal of Au-sulfide com-
plexes from a hydrothermal fluid) and, in turn, facilitate
wallrock sulfidation (i.e., deposition of sulfides and gold).
The wallrocks of orogenic gold systems in the VVF
comprise various intrusive bodies (Fig. 1b), which have all
been metamorphosed to regional greenschist facies. These
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wallrocks typically contain an igneous assemblage composed
to varying proportions of plagioclase, quartz, alkali feldspar,
biotite, hornblende and Fe-bearing minerals, particularly
ilmenite, titanomagnetite, and magnetite (Fig. 4e—f; Robert
and Brown 19864, b; Groves et al. 1998, 2000; Goldfarb et al.
2005; Rezeau et al. 2017; Dubé 2018; Daver et al. 2020). Dur-
ing fluid-rock reactions leading to wallrock sulfidation (Eqs. 1
and 2), native gold can be precipitated during pyrite growth
(Fig. 10a; Reich et al. 2005; Pokrovski et al. 2019).

FeTiOs imenite) + 2AU(HS); +2H" = FeSy i)

. (1)
+ 2Au(g01d) + Tloz(rume) +2H,S + H,0
Fe3 04 magnetice + SAUCHS); + 3H* = 3FeSy e )
+3 AU + 4H,0 + 1/, H, @

This, together with an isotopic shift to higher §>*S val-
ues, suggests that fluid desulfidation not only decreases
/S, through the removal of sulfur but also induces a small
decrease in fluid fO, during Py2 growth (Fig. 9a). Based on
an isotopic shift to lower 8°*S values from early pyrrhotite
to late arsenopyrite, Petrella et al. (2021) showed that in oro-
genic gold systems formed by wallrock sulfidation in As-rich
meta-sedimentary rocks, an increase in fluid fO, would be
expected. However, the systematic isotopic shift to higher
5*S values between Pyl and Py2 of the VVF, together with
native gold and polymetallic Au-Ag-Bi-Te inclusions that
are unrelated to zoned areas in Py2 (Fig. 6) with minor
and trace concentrations of Ni, Co, or As (Tables 2 and 3),
supports a decrease in fluid fO, for orogenic gold systems
formed in As-poor meta-volcanic rocks by sulfidation of Fe-
rich oxides (c.f., Palin and Xu 2000). Daver et al. (2020)
document barite and hematite in the VVF that are associ-
ated with texturally early pyrite, which support a phase of
early pyrite formation under oxidized conditions followed
by pyrite growth in more reducing conditions. This implies
that pervasive, local fluid-rock interactions, particularly the
replacement of Fe-bearing oxides in wallrocks and slivers
of wallrocks within veins (Fig. 4b—f; Egs. 1 and 2), is a
main driver to precipitate Pyl and Py2. Subsequent gold
precipitation in pyrite is a result of a decrease in gold solu-
bility most likely triggered by intrinsic temperature—pres-
sure fluctuations during wallrock sulfidation in a reducing
environment (Fig. 9b; Ohmoto and Rye 1979; Phillips 1986;
Palin and Xu 2000; Evans et al. 2006; Ward et al. 2017; Ord
and Hobbs 2018; Roman et al. 2019).

Wallrock sulfidation drives Au-Ag-Te-Bi inclusion
formation

Whereas decreases in fluid fO, and fS, explain the precipi-
tation of native gold in Pyl and Py2, they fail to account
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for the formation of polymetallic Au-Ag-Te-Bi inclusions
in Py2 (Figs. 4d, 5a, and 6). Such inclusions are common
in the VVF (e.g., Robert 1983; Robert and Brown 1984,
19864, b; Rezeau et al. 2017; Daver et al. 2020) and have
been recognized in similar As-poor orogenic gold systems
hosted in meta-volcanic and intrusive rocks, such as in the
Mt Pleasant district of the Yilgarn Craton or in the Xiao-
ginling district of the North China Craton (Bi et al. 2011;
LaFlamme et al. 2018b; Jian et al. 2021). These polymetallic
inclusions can form from a gold-undersaturated hydrother-
mal fluid through the involvement of a co-existing Bi-melt
phase, also referred to as low-melting-point-chalcophile
element melt (LMCE). Based on thermodynamic models,
gold transported as AuOH,,,, can be deposited on mineral
surfaces by Te-Bi-adsorption-reduction mechanisms (Tooth
et al. 2008, 2011; Jian et al. 2021). This process has also
been proposed for the Neoarchean Swayze greenstone belt
of the Abitibi subprovince (Hastie et al. 2016, 2020). The
Bi-melt gold collector model provides a feasible explanation
for the deposition of Au-Ag-Te-Bi inclusions in orogenic
gold systems. However, polymetallic inclusions in the ore-
bodies of the VVF differ significantly in Bi-Te composition,
compared to inclusions usually associated with an LMCE
phase. The latter commonly consist of higher Bi:Te pro-
portions, reflected in the abundance of Bi and maldonite
(Au,Bi) blebs. These globular Bi- and Au-rich blebs have
been interpreted to form as a result of oxidized fluid buffer-
ing at the pyrrhotite-magnetite boundary and to indicate for-
mation from an LMCE phase (Tooth et al. 2008, 2011). The
polymetallic inclusions hosted in Py2 rims are not associated
with Bi blebs or Au-rich maldonite inclusions (Fig. 5a-b).
Moreover, the formation of a co-existing Te-rich melt phase
in a hydrothermal fluid would require the oxidation of Te™ or
Te?~ species to Tet (McPhail 1995). However, the auriferous
hydrothermal fluids remained in a reduced state throughout
the gold precipitation process, as recorded by the isotopic
shift to higher 6**S values from Py1 to Py2.

Fluid desulfidation under reducing conditions would be
consistent with aqueous transport of reduced Te-species
(Zhang and Spry 1994; Keith et al. 2018). Based on telluride
mineral stability, the abundance of calaverite (AuTe,) over
petzite (Ag;AuTe,) and hessite (Ag,Te), also recorded by
Rezeau et al. (2017) and Daver et al. (2020), in combination
with higher 8**S values of Py2 suggests that telluride-gold
formation likely depended on a coupled decrease of fTe,
and fS, of the hydrothermal fluid (Figs. 10b and 11a-b).
Under neutral to alkaline pH, low salinity, high temperature
(350+50 °C), and generally low fO, hydrothermal fluids,
comparable to those recorded in many Neoarchean orogenic
gold systems, Te solubility will decrease under increasingly
reduced conditions. The decrease in fluid fO,, associated
with a decrease in fS,, in the pyrite stability field, induces
a drop in fluid fTe, and results in telluride deposition (Afifi
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Fig. 11 a A logfTe,-temperature diagram showing major telluride
mineral formation during Py2 growth, related to decreasing fTe,
activity in the orogenic gold systems of the VVF. Afifi et al. (1988a,
b) Modified from Afifi et al. (1988b). b Ternary Au-Ag-Te diagram
showing major telluride mineral compositions (<300 °C) and hydro-
thermal fluid evolution of the VVF as well as increasingly Ag-rich

et al. 1988a, b; Zhang and Spry 1994; Cooke and McPhail
2001; Cook et al. 2009; Grundler et al. 2013; Gao et al. 2017;
Keith et al. 2018). At approximately 300 °C (Fig. 11a-b),
this decrease in fTe, leads to precipitation of calaverite and
evolved towards increasingly Ag-bearing tellurides, such
as petztite (Figs. 10b and 11a-b). Therefore, these phases
were incorporated into homogeneous Py2 rims and formed
polymetallic Au-Ag-Te-Bi inclusions with different Au:Ag
proportions, as a result of coupled decreases in fO,, fS,, and
[Te, of the hydrothermal fluid (Figs. 9, 10, and 11).

Conclusions

Pyrite hosted within QTC vein orebodies (Goldex, Tri-
angle, Plug #4, Pascalis Gold Trend, Beaufor) of the
VVF records a minor ubiquitous shift in 8**S values of
up to+ 3.0%o from lighter porous core domains (Pyl) to
heavier homogeneous rims (Py2) and shows a slightly
negative A¥S signature, ranging between —0.20%o and
0.01%0. Py2 contains most of the associated native gold
and polymetallic inclusions (Au-Ag-Te-Bi). The increase
in 63*S values, combined with, in general, low concentra-
tions in Co and Ni in Py1 cores (< < 10,000 ppm), reflects
a steady fO, and fS, decrease. This decrease also led to
deposition of Co and Ni in Pyl core domains, as well as
the association of texturally-late pyrrhotite with Py2 and
the removal of gold-sulfide complexes from the hydrother-
mal fluid. Our data suggest that a homogeneous fluid res-
ervoir introduced gold-sulfide complexes and that perva-
sive fluid desulfidation-wallrock sulfidation reactions were

Ag (Wt.n/o)

tellurides, including hessite, as described by Rezeau et al. (2017)
in quartz-tourmaline-carbonate veins of the VVF. Modified after
Zhang and Spry (1994), based on data from Markham (1960), Cabri
(1965), Legendre et al. (1980), and . Cal =calaverite; Emp=empres-
site; Hess=hessite; Kre=krennerite; VVF=Val-d’Or Vein Field;
Pet =petztite; Stut=stuetzite; Syl =sylvanite

a key mechanism that led to the growth of homogeneous
Au-bearing Py2 rims, particularly at the expense of ilmen-
ite, titanomagnetite, and magnetite contained in wallrocks
and wallrock slivers within QTC veins. A decrease in the
activity of reduced sulfur species drives Au-bearing pyrite
precipitation. This reaction is associated with an overall
decrease in fO, within the pyrite stability field, which,
in turn, is responsible for a steady decrease in fTe,. This
decrease initially precipitated calaverite and upon further
decrease in fTe, evolved towards increasingly Ag-bearing
telluride formation, such as petztite, in Py2 rims. Arsenic
contents in As-poor porous Pyl cores (all <67 ppm) and
homogeneous Py2 rims (<550 ppm) limit the formation of
lattice-bound gold and favor inclusion-hosted gold (Pyl,
Py1b <30 ppm, and Py2 < 1250 ppm). The absence of lat-
tice-bound gold, notoriously associated with orogenic gold
systems in As-rich rocks, suggests that the VVF presents a
prime example for an orogenic gold system that formed in
a generally reducing, As-poor (< 0.1 wt%) Archean green-
stone belt by fluid-wallrock sulfidation reactions.
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